Preview

Aterotromboz = Atherothrombosis

Advanced search

Sulodexide as pharmacotherapy for protection of endothelium and suppression of thrombosis in COVID-19

https://doi.org/10.21518/2307-1109-2021-11-2-6-17

Abstract

The article presents an overview of publications describing the mechanisms of the development of the pathological process in patients infected with SARS-CoV-2 coronavirus. The authors analysed publications showing that damage to the endothelium and endothelial glycocalyx is the main factor influencing the development of coronavirus COVID-19 infection. It is the endothelium inflammation caused by a virus that leads to the dysfunction of the vascular system and the development of coagulopathy. Using scanning electron microscopy and flow cytofluorimetry, we showed that patients with COVID-19 of moderate severity (CT2) had significant desquamation of endothelial cells (concentration of circulating endothelial cells (CEC) in blood is 300-400 cells/ml whereas the normal range is no more than 10 cells/ ml). Such desquamation should cause exposure of the pro-inflammatory and thrombogenic subendothelial matrix, which, as a results, leads to the development of thrombotic disorders of the circulatory system. Therefore, it is only natural to try to counteract disease progression by protecting the endothelial glycocalyx from damage. Sulodexide, a mixture of fast-moving heparin fraction (80%) and the glycocalyx element dermatan sulfate (20%) obtained from the mucous membrane of the small intestine of pigs, is very promising in this regard. This drug can significantly reduce the inflammatory process, protect the glycocalyx and endothelium from damage, resulting in lowering the degree of thrombus formation in patients with coronavirus COVID-19 infection, which relieves the course of the disease and improves its outcome. The experimental data presented in the review, although obtained in not large enough population of patients, allow us to consider sulodexide a promising drug that protects the endothelium and suppresses thrombosis in COVID-19.

About the Authors

A. M. Melkumyants
National Medical Research Center of Cardiology; Moscow Institute of Physics and Technology (National Research University)
Russian Federation

Arthur M. Melkumyants, Dr. Sci. (Biol.), Professor, Leading Researcher, National Medical Research Center of Cardiology; Professor of Department of Physics of Living Systems, Moscow Institute of Physics and Technology (National Research University)

121552, Moscow, 3rd Cherepkovskaya St., 15a
141701, Dolgoprudny, Institutsky Lane, 9



L. I. Buryachkovskaya
National Medical Research Center of Cardiology
Russian Federation

Liudmila I. Buryachkovskaya, Dr. Sci. (Biol.), Leading Researcher

121552, Moscow, 3rd Cherepkovskaya St., 15a



N. V. Lomakin
Central Clinical Hospital with Polyclinic of the Office of the President of the Russian Federation
Russian Federation

Nikita V. Lomakin, Dr. Sci. (Med.), Chief Freelance Cardiologist, Head of the Department of Emergency Cardiology and Cardiac Resuscitation

121359, Moscow, Marshal Timoshenko St., 15



O. A. Antonova
National Medical Research Center of Cardiology
Russian Federation

Olga A. Antonova, Research Associate

121552, Moscow, 3rd Cherepkovskaya St., 15a



V. V. Ermiskin
National Medical Research Center of Cardiology
Russian Federation

Vladimir V. Ermiskin, Cand. Sci. (Biol.), Leading Researcher

121552, Moscow, 3rd Cherepkovskaya St., 15a



Y. V. Dotsenko
National Medical Research Center of Cardiology
Russian Federation

Yulia V. Dotsenko, Cand. Sci. (Med.), Research Associate

121552, Moscow, 3rd Cherepkovskaya St., 15a



References

1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J. et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733. https://doi.org/10.1056/NEJMoa2001017.

2. Wiersinga W.J., Rhodes A., Cheng A.C., Peacock S.J., Prescott H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020;324(8):782–793. https://doi.org/10.1001/jama.2020.12839.

3. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395(10223):507–513. https://doi.org/10.1016/S0140-6736(20)30211-7.

4. Prabakaran P., Xiao X., Dimitrov D.S. A model of the ACE2 structure and function as a SARS-CoV receptor. Biochem Biophys Res Commun. 2004;314(1):235–241. https://doi.org/10.1016/j.bbrc.2003.12.081.

5. Zaim S., Chong J.H., Sankaranarayanan V., Harky A. COVID-19 and multi-organ response. Curr Probl Cardiol. 2020;45(8):100618. https://doi.org/10.1016/j.cpcardiol.2020.100618.

6. Maev I.V., Shpektor A.V., Vasilyeva E.Yu., Manchurov V.N., Andreev D.N. Novel coronavirus infection COVID-19: extrapulmonary manifestations. Terapevticheskii arkhiv = Therapeutic Archive. 2020;(8):4–11. (In Russ.) https://doi.org/10.26442/00403660.2020.08.000767.

7. Kochi A.N., Tagliari A.P., Forleo G.B., Fassini G.M., Tondo C. Cardiac and arrhythmic complications in patients with COVID-19. J Сardiovasc Еlectrophysiol. 2020;31(5):1003–1008. https://doi.org/10.1111/jce.14479.

8. Zheng Y.-Y., Ma Y.-T., Zhang J.-Y., Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259– 260. https://doi.org/10.1038/s41569-020-0360-5.

9. Lee I.-C., Huo T.-I., Huang Y.-H. Gastrointestinal and liver manifestations in patients with COVID-19. J Chin Med Assoc. 2020;83(6):521–523. https://doi.org/10.1097/JCMA.0000000000000319.

10. Batlle D., Soler M.J., Sparks M.A., Hiremath S., South A.M., Welling P.A., Swaminathan S. Acute kidney injury in COVID-19: emerging evidence of a distinct pathophysiology. J Am Soc Nephrol. 2020;31(7):1380–1383. https://doi.org/10.1681/ASN.2020040419.

11. Portolés J., Marques M., López-Sánchez P., de Valdenebro M., Muñez E., Serrano M.L. et al. Chronic kidney disease and acute kidney injury in the COVID-19 Spanish outbreak. Nephrol Dial Transplant. 2020;35(8):1353–1361. https://doi.org/10.1093/ndt/gfaa189.

12. Zhang C., Shi L., Wang F.S. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020;5(5):428–430. https://doi.org/10.1016/S2468-1253(20)30057-1.

13. Ellul M.A., Benjamin L., Singh B., Lant S., Michael B.D., Easton A. et al. Neurological associations of COVID-19. Lancet Neurol. 2020;19(9):767–783. https://doi.org/10.1016/S1474-4422(20)30221-0.

14. Yachou Y., El Idrissi A., Belapasov V., Ait Benali S. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: Understanding the neurological manifestations in COVID-19 patients. Neurol Sci. 2020;41(10):2657–2669. https://doi.org/10.1007/s10072-020-04575-3.

15. Baig A.M. Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neurosci Ther. 2020;26(5):499–501. https://doi.org/10.1111/cns.13372.

16. Pons S., Fodil S., Azoulay E., Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit Сare. 2020;24(1):1–8. https://doi.org/10.1186/s13054-020-03062-7.

17. Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. https://doi.org/10.1016/S0140-6736(20)30937-5.

18. O’Sullivan J.M., Mc Gonagle D., Ward S.E., Preston R.J., O’Donnell J.S. Endothelial cells orchestrate COVID-19 coagulopathy. Lancet Haematol. 2020;7(8):e553–e555. https://doi.org/10.1016/S2352-3026(20)30215-5.

19. Vorobyev P.A., Momot A.P., Zaitsev A.A., Elykomov V.A., Sychev D.A., Krasnova L.S. et al. Disseminated intravascular coagulation syndrome in COVID-19 infection. Terapiya = Therapy. 2020;(5):25–34. (In Russ.) https://doi.org/10.18565/therapy.2020.5.25-34.

20. Zayratyants O.V. (ed.). Pathological anatomy of COVID-19. Atlas. Moscow; 2020. 140 p. (In Russ.) Available at: https://mosgorzdrav.ru/uploads/imperavi/ru-RU/%D0%9F%D0%B0%D1%82%D0%B0%D0%BD%D0%B0%D1%82%D0%BE%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9%20%D0%B0%D1%82%D0%BB%D0%B0%D1%81%2023.06.2020%20-%202.pdf

21. Guervilly C., Burtey S., Sabatier F., Cauchois R., Lano G., Abdili E. et al. Circulating endothelial cells as a marker of endothelial injury in severe COVID-19. J Infect Dis. 2020;222(11):1789–1793. https://doi.org/10.1093/infdis/jiaa528.

22. Moussa M.D., Santonocito C., Fagnoul D., Donadello K., Pradier O., Gaussem P. et al. Evaluation of endothelial damage in sepsis-related ARDS using circulating endothelial cells. Intensive Care Med. 2015;41(2):231–238. https://doi.org/10.1007/s00134-014-3589-9.

23. Mancuso P., Gidaro A., Gregato G., Raveane A., Cremonesi P., Quarna J. et al. Circulating endothelial progenitors are increased in COVID-19 patients and correlate with SARS-CoV-2 RNA in severe cases. J Thromb Haemost. 2020;18(10):2744–2750. https://doi.org/10.1111/jth.15044.

24. Buryachkovskaya L.I., Melkumyants A.M., Lomakin N.V., Antonova O.A., Ermiskin V.V. Injury Of Vascular Endothelium And Erythrocytes In Covid-19 Patients. Consilium Medicum. 2021;(6):469–476. (In Russ.) https://doi.org/10.26442/20751753.2021.6.200939.

25. Melkumyants A., Buryachkovskaya L., Lomakin N., Antonova O., Serebruany V. Mild COVID-19 and Impaired CellEndothelial Crosstalk: Considering Long-Term Antithrombotics and Vascular Protection? Thromb Haemost. 2021. https://doi.org/10.1055/a-1551-9911.

26. Furchgott R.F., Zawadszki J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):373–376. https://doi.org/10.1038/288373a0.

27. Ackermann M., Verleden S.E., Kuehmel M., Haverich A., Welte T., Laenger F. et al. Pulmonary vascular endothelialitis, thrombosis and angiogénesis in Covid-19. N Engl J Med. 2020;383(2):120–128. https://doi.org/10.1056/NEJMoa2015432.

28. Ince C., Mayeux P.R., Nguyen T., Gomez H., Kellum J.A., Ospina-Tascón G.A. et al. The endothelium in sepsis. Shock. 2016;45(3):259–270. https://doi.org/10.1097/SHK.0000000000000473.

29. Teijaro J.R., Walsh K.B., Cahalan S., Fremgen D.M., Roberts E., Scott F. et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell. 2011;146(6):980–991. https://doi.org/10.1016/j.cell.2011.08.015.

30. Weinbaum S., Tarbell J.M., Damiano E.R. The structure and function of the endothelial glycocalyx layer. Annи Rev Biomed Eng. 2007;9:121–167. https://doi.org/10.1146/annurev.bioeng.9.060906.151959.

31. Alphonsus C.S., Rodseth R.N. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia. 2014;69(7):777–784. https://doi.org/10.1111/anae.12661.

32. Zhang X., Sun D., Song J.W., Zullo J., Lipphardt M., Coneh-Gould L., Goligorsky M.S. Endothelial cell dysfunction and glycocalyx – A vicious circle. Matrix Biol. 2018;71–72:421–431. https://doi.org/10.1016/j.matbio.2018.01.026.

33. Frati-Munari A.C. Medical significance of endothelial glycocalyx. Arch Cardiol Mex. 2013;83(4):303–312. https://doi.org/10.1016/j.acmx.2013.04.015.

34. Becker B.F., Jacob M., Leipert S., Salmon A.H., Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol. 2015;80(3):389–402. https://doi.org/10.1111/bcp.12629.

35. Henrich M., Gruss M., Weigand M.A. Sepsis-induced degradation of endothelial glycocalix. Scientific World Journal. 2010;10:917–923. https://doi.org/10.1100/tsw.2010.88.

36. Yamaoka-Tojo M. Endothelial glycocalyx damage as a systemic inflammatory microvascular endotheliopathy in COVID19. Biomed J. 2020;43(5):399–413. https://doi.org/10.1016/j.bj.2020.08.007.

37. Yamaoka-Tojo M. Vascular endothelial glycocalyx damage in COVID-19. Int J Mol Sci. 2020;21(24):9712. https://doi.org/10.3390/ijms21249712.

38. Hoppensteadt D.A., Fareed J. Pharmacological profile of sulodexide. Int Angiol. 2014;33(3):229–235. Available at: https://pubmed.ncbi.nlm.nih.gov/24936531.

39. Ofosu F.A. Pharmacological actions of sulodexide. Semin Thromb Hemost. 1998;24(2):127–138. https://doi.org/10.1055/s-2007-995831.

40. Lauver D.A., Lucchesi B.R. Sulodexide: a renewed interest in this glycosaminoglycan. Cardiovasc Drug Rev. 2006;24(3– 4):214–226. https://doi.org/10.1111/j.1527-3466.2006.00214.x.

41. Munari A.C., Cantu S.O., Huet N.E., Alfaro M.A. Could Sulodexide be Helpful in COVID-19? Cardiol. 2021;4(1):1040. Available at: https://meddocsonline.org/annals-of-cardiology-and-vascular-medicine/could-sulodexide-be-helpfulin-COVID-19.pdf.

42. Li T., Liu X., Zhao Z., Ni L., Liu C. Sulodexide recovers endothelial function through reconstructing glycocalyx in the balloon-injury rat carotid artery model. Oncotarget. 2017;8(53):91350. https://doi.org/10.18632/oncotarget.20518.

43. Suminska-Jasinska K., Polubinska A., Ciszewicz M., Mikstacki A., Antoniewicz A., Breborowicz A. Sulodexide reduces senescence-related changes in human endothelial cells. Med Sci Monit. 2011;17(4):CR222. https://doi.org/10.12659/msm.881719.

44. Masola V., Zaza G., Onisto M., Lupo A., Gambaro G. Glycosaminoglycans, proteoglycans and sulodexide and the endothelium: biological roles and pharmacological effects. Int Angiol. 2014;33(3):243–254. Available at: https://pubmed.ncbi.nlm.nih.gov/24936533.

45. Mannello F., Ligi D., Canale M., Raffetto J.D. Sulodexide down-regulates the release of cytokines, chemokines, and leukocyte colony stimulating factors from human macrophages: role of glycosaminoglycans in inflammatory pathways of chronic venous disease. Curr Vasc Pharmacol. 2014;12(1):173–185. https://doi.org/10.2174/1570161111666131126144025.

46. Coccheri S., Mannello F. Development and use of sulodexide in vascular diseases: implications for treatment. Drug Des Devel Ther. 2014;8:49–65. https://doi.org/10.2147/DDDT.S6762.

47. Adiguzel C., Iqbal O., Hoppensteadt D., Jeske W., Cunanan J., Litinas E. et al. Comparative anticoagulant and platelet modulatory effects of enoxaparin and sulodexide. Clin Appl Thromb Hemost. 2009;15(5):501–511. https://doi.org/10.1177/1076029609338711.

48. Erlikh A.D. Anticoagulants and antiaggregants in the COVID-19 era. Aterotromboz = Atherothrombosis. 2020;(1):58–66. (In Russ.) https://doi.org/10.21518/2307-1109-2021-11-1-58-66.

49. Gonzalez-Ochoa A.J., Raffetto J.D., Hernández A.G., Zavala N., Gutiérrez O., Vargas A., Loustaunau J. Sulodexide in the treatment of patients with early stages of COVID-19: a randomized controlled trial. Thromb Haemost. 2021;121(7):944–954. https://doi.org/10.1055/a-1414-5216.


Review

For citations:


Melkumyants A.M., Buryachkovskaya L.I., Lomakin N.V., Antonova O.A., Ermiskin V.V., Dotsenko Y.V. Sulodexide as pharmacotherapy for protection of endothelium and suppression of thrombosis in COVID-19. Aterotromboz = Atherothrombosis. 2021;11(2):6-17. (In Russ.) https://doi.org/10.21518/2307-1109-2021-11-2-6-17

Views: 1283


ISSN 2307-1109 (Print)
ISSN 2658-5952 (Online)