Preview

Атеротромбоз

Расширенный поиск

ФАРМАКОГЕНЕТИКА АНТИТРОМБОТИЧЕСКИХ ПРЕПАРАТОВ: СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ

https://doi.org/10.21518/2307-1109-2018-2-115-129

Полный текст:

Аннотация

В обзоре отражены основные исследования, посвященные изучению генетических мишеней индивидуальной вариабельности лекарственного ответа на антитромботические препараты. В первой части отражены исследования, посвященные изучения генов, кодирующие субъединицы тромбоцитарных рецепторов, изучавшиеся в ассоциации возможного недостаточного эффекта ацетилсалициловой кислоты, а также белков-транспортеров и аллельных вариантов со сниженной функциональной активностью CYP450, с наличием которых ассоциируется недостаточный эффект на терапию клопидогрелом. Во второй части рассмотрены полиморфизмы, определяющие индивидуальную дозу и риск кровотечений на фоне чрезмерной гипокоагуляции у пациентов, принимающих варфарин. Также представлены современные данные, посвященные изучению генетически-обусловленных индивидуальных реакций на прием новых ингибиторов P2Y12-ингибиторов (прасугрел и тикагрелор) и прямых пероральных антикоагулянтов.

Об авторе

Е. С. Кропачева
Институт клинической кардиологии им. А. Л. Мясникова Федерального государственного бюджетного учреждения «Национальный медицинский исследовательский центр кардиологии» Министерства здравоохранения Российской Федерации
Россия

Кропачева Екатерина Станиславовна – к.м.н., отдел клинических проблем атеротромбоза

тел.: +7 (495) 150-44-19 

121552, Москва, ул. 3-я Черепковская, 15А


Список литературы

1. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with st-segment elevation: the task Force for the management of acute myocardial infarction in patients presenting with st-segment elevation of the european society of Cardiology (ESC). European Heart Journal, 2018 January 7; 39 (Issue 2): 119–177.

2. ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the task Force for dual antiplatelet therapy in coronary artery disease of the european society of Cardiology (ESC) and of the european Association for Cardio-thoracic surgery (EACTS). European Heart Journal, 2018 January 14; 39(Issue 3): 213–260.

3. Диагностика и лечение Фибрилляции предсердий. Рекомендации РКО, ВНОА и АССХ, 2012. 112 с./

4. Antithrombotic therapy and Prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-Based Clinical Practice Guidelines. Chest. 2012; 141(2 suppl): e637s–68s. doi:10.1378/chest.11-2306. pmid:22315274.

5. Сычев Д.А. Рекомендации по применению фармакогенетического тестирования в клинической практике. Качественная клиническая практика. 2001; 1: 3-10 [Sychev D.A. Guidelines for pharmacogenetic testing in clinical practice. Kachestvennaya Klinicheskaya Praktika. 2001; 1: 3-10.] (In Russ).

6. Bhatt D.L., Topol E.J. Scientific and therapeuticadvances in antiplatelet therapy. Nat. Rev. Drug. Discov., 2003 Jan; 2(1): 15-28.

7. Braunwald E., Angiolillo D., Bates E., et al. Assessing the currentrole of plateletfunction testing. Clin Cardiol, 2008 Mar; 31(3 suppl 1):I10-6. doi:10.1002/clc.20361.

8. Kuliczkowski W., Witkowski A., Polonski L., et al Interindividualvariability in the response to oralantiplatelet drugs: a position paper of the Working Group on antiplatelet drugs resistance appointed by the section of Cardiovascular Interventions of the Polish Cardiac society, endorsed by the Working Group on thrombosis of the european society of Cardiology. Eur Heart J, 2009 Feb; 30(4):426-35.

9. Lordkipanidzé M., Pharand C., Schampaert E. et al A comparison of six major platelet function tests to determine the prevalence of aspirin resistance in patients with stable coronary artery disease. Eur. Heart. J.2007 Jul; 28(14): 1702-8. epub 2007 Jun 14.

10. Gum P.A., Kottke-Marchant K., Welsh P.A., et al. A prospective, blindeddetermination of the natural history of aspirin resistance among stable patients with cardiovascular disease. J. Am. Coll. Cardiol. 2003 Mar 19; 41(6): 961-5.

11. Maree A.O., Curtin R.J., Chubb A. et al Cyclooxygenase-1 haplotype modulates platelet response to aspirin. J. Thromb. Haemost. 2005 oct; 3(10): 2340-5. epub 2005 sep 9.

12. Goodman T., Ferro A., Sharma P. Pharmacogenetics of aspirin resistance: a comprehensive systematic review. Br. J. Clin. Pharmacol. 2008 Aug; 66(2): 222-32. doi: 10.1111/j.1365-2125.2008.03183.x. epub 2008 Apr 22.

13. Voora D., Horton J., Shah S.H., et al. Polymorphisms associated with in vitro aspirin resistance are not associated with clinical outcomes in patients with coronary artery disease who report regular aspirin use. Am. Heart J.2011 Jul; 162(1): 166-72.e1. doi: 10.1016/j.ahj.2011.03.026.

14. Weng Z., Li X., Li Y., et al the association of four common polymorphisms from four candidate genes (CoX-1, CoX-2, ItGA2B, ItGA2) with aspirin insensitivity: a meta-analysis. PLoS One. 2013 nov 14; 8(11): e78093. doi: 10.1371/journal.pone.0078093. eCollection 2013.

15. Cipollone F., Rocca B., Patrono C. Cyclooxygenase-2expression and inhibition in Atherothrombosis. Arterioscler. Thromb. Vasc. Biol. 2004 Feb; 24(2): 246-55. epub 2003 oct 30.

16. Sharma V, Kaul S, Al-Hazzani A et al Association of CoX-2rs20417 with aspirin resistance. J. Thromb. Thrombolysis. 2013 Jan; 35(1):95-9. doi: 10.1007/s11239-012-0777-8.

17. Mukherjee D., Nissen S.E., Topol E.J. Risk of cardiovascular events associated with selective CoX-2 inhibitors. JAMA. 2001 Aug 22-29; 286(8): 954-9.

18. Kearney P.M., Baigent C., Godwin J. et al. Do selectivecyclo-oxygenase-2inhibitors and traditional nonsteroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ. 2006 Jun 3; 332(7553): 1302-8.

19. Ross S., Eikelboom J., Anand S.S. et al Association of cyclooxygenase-2 genetic variant with cardiovascular disease. Eur. Heart J. 2014 sep 1; 35(33): 2242-8a. doi:10.1093/eurheartj/ehu168. epub 2014 May 5.

20. Kunicki T.J., Williams S.A., Nugent D.J., et al. Lack of association between aspirin responsiveness and seven candidate gene haplotypes in patients with symptomatic vascular disease. Thromb. Haemost. 2009 Jan; 101(1): 123-33.

21. Backman J.D., Yerges-Armstrong L.M., Horenstein R.B. et al. Prospective evaluation of Genetic Variation in Platelet endothelial Aggregation Receptor 1 Reveals Aspirin-Dependent effects on Platelet Aggregation Pathways. Clin. Transl. Sci. 2017 Mar; 10(2): 102-109. doi: 10.1111/cts.12438. epub 2017 Jan 11.

22. O’Connor C.T., Kiernan T.J., Ya B.P. The genetic basis of antiplatelet and anticoagulant therapy: A pharmacogenetic review of newer antiplatelets (clopidogrel, prasugrel and ticagrelor) and anticoagulants (dabigatran, rivaroxaban, apixaban and edoxaban). Expert Opin drug metab. Toxicol. 2017 Jul; 13(7): 725-739. doi: 10.1080/17425255.2017.1338274. epub 2017 Jun 13.

23. Spiewak M., Małek Ł.A., Kostrzewa G., et al. Influence of C3435tmultidrug resistance gene-1 (MDR-1) polymorphism on platelet reactivity and prognosis in patients with acute coronary syndromes. Kardiol Pol. 2009 Aug; 67(8): 827-34.

24. Wang X.Q., Shen C.L., Wang B.N. et al. Genetic polymorphisms of CYP2C19 2 and ABCB1 C3435taffect the pharmacokinetic and pharmacodynamic responses to clopidogrel in 401 patients with acute coronary syndrome. Gene. 2015 Mar 10; 558(2): 200-7. doi: 10.1016/j.gene.2014.12.051. epub 2014 Dec 24.

25. Calderón-Cruz B., Rodríguez-Galván K., ManzoFrancisco L.A., et al. C3435tpolymorphism of the ABCB1 gene is associated with poor clopidogrel responsiveness in a Mexican population undergoing percutaneous coronary intervention. Thromb. res. 2015 nov; 136(5): 894-8. doi: 10.1016/j.thromres.2015.08.025. epub 2015 sep 4.

26. Simon T, Verstuyft C, Mary-Krause M, et al Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med. 2009 Jan 22; 360(4): 363-75. doi: 10.1056/NEJMoa0808227. epub 2008 Dec 22.

27. Hou X., Han W., Gan Q. et al. CYP2C19 and ABCB1 genetic polymorphisms correlate with the recurrence of ischemic cardiovascular adverse events after clopidogrel treatment. J Clin Lab Anal. 2018 Jun;32(5):e22369. doi: 10.1002/jcla.22369. epub 2018 Feb 4.

28. Singh M., Shah T., Adigopula S., et al. CYP2C19*2/ ABCB1-C3435tpolymorphism and risk of cardiovascular events in coronary artery disease patients on clopidogrel: is clinical testing helpful? Indian Heart J. 2012 Jul-Aug; 64(4): 341-52. doi: 10.1016/j.ihj.2012.06.003. epub 2012 Jun 21.

29. Sangkuhl K., Klein T.E., Altman R.B. Clopidogrel pathway. Pharmacogenet Genomics. 2010 Jul; 20(7): 463-5. doi: 10.1097/FPC.0b013e3283385420.

30. Strom C.M., Goos D., Crossley B., et al. Testing for variants in CYP2C19: population frequencies and testing experience in a clinical laboratory. Genet. med. 2012 Jan; 14(1): 95-100. doi: 10.1038/gim.0b013e3182329870. epub 2011 oct 7.

31. Hochholzer W., Trenk D., Bestehorn H.P., et al. Impact of the degree of peri-interventional platelet inhibition after loading with clopidogrel on early clinical outcome of elective coronary stent placement. J. Am. Coll. Cardiol. 2006 nov 7; 48(9): 1742-50. epub 2006 oct 17.

32. Buonamici P., Marcucci R., Migliorini A., et al Impact of platelet reactivity after clopidogrel administration on drug-eluting stent thrombosis. J. Am. Coll. Cardiol. 2007 Jun 19; 49(24): 2312-7. epub 2007 Jun 4.

33. Viviani Anselmi C., Briguori C., Roncarati R. et al Routine assessment of on-clopidogrel platelet reactivity and gene polymorphisms in predicting clinical outcome following drug-eluting stent implantation in patients with stable coronary artery disease. JACC Cardiovasc Interv. 2013 nov; 6(11): 1166-75. doi: 10.1016/j.jcin.2013.06.010.

34. Trenk D., Hochholzer W., Fromm M.F., et al. Cytochrome P450 2C19 681G>A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents. J. Am. Coll. Cardiol. 2008 May 20; 51(20): 1925-34. doi: 10.1016/j.jacc.2007.12.056.

35. Mega J.L., Close S.L., Wiviott S.D., et al. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the tRIton-tIMI 38 trial: a pharmacogenetic analysis. Lancet. 2010 oct 16; 376(9749): 1312-9. doi: 10.1016/s0140-6736(10)61273-1.

36. Collet J.P., Hulot J.S., Pena A., et al Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet. 2009 Jan 24; 373(9660): 309-17. doi: 10.1016/s0140-6736(08)61845-0. epub 2008 Dec 26.

37. Price M.J., Berger P.B., Teirstein P.S. et al GRAVItAs Investigators. standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVItAsrandomized trial. JAMA. 2011 Mar 16; 305(11): 1097-105. doi: 10.1001/jama.2011.290.

38. Collet J.P., Hulot J.S., Cuisset T. et al Genetic and platelet function testing of antiplatelet therapy for percutaneous coronary intervention: the ARCtICGenestudy. Eur. J. Clin. Pharmacol. 2015 nov; 71(11): 1315-24. doi: 10.1007/s00228-015-1917-9. epub 2015 Aug 13.

39. Galeazzi R., Olivieri F., Spazzafumo L., et al. Clustering of ABCB1 and CYP2C19 Genetic Variants Predicts Risk of Major Bleeding and thrombotic events in elderly Patients with Acute Coronary syndrome Receiving Dual Antiplatelet therapy with Aspirin and Clopidogrel. drugs Aging. 2018; 35(7): 649–656. doi:10.1007/s40266-018-0555-1.

40. Sibbing D., Koch W., Gebhard D., et al. Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogreltreated patients with coronary stent placement. Circulation. 2010 Feb 2; 121(4): 512-8. doi: 10.1161/CIRCULAtIonAHA.109.885194. epub 2010 Jan 18.

41. Grosdidier C., Quilici J., Loosveld M., et al. Effect of CYP2C19*2 and *17 genetic variants on platelet response to clopidogrel and prasugrel maintenance dose and relation to bleeding complications. Am. J. Cardiol. 2013 Apr 1; 111(7): 985-90. doi: 10.1016/j.amjcard.2012.12.013. epub 2013 Jan 19.

42. Huang B., Cui D.J., Ren Y., et al. Effect of cytochrome P450 2C19*17 allelic variant on cardiovascular and cerebrovascular outcomes in clopidogrel-treated patients: A systematic review and meta-analysis. J. res. med. Sci. 2017 sep 26; 22: 109. doi: 10.4103/jrms.JRMs_590_16. eCollection 2017.

43. García-Lagunar M.H., Consuegra-sánchez L., ConesaZamora P., et al. Genotyping of six clopidogrelmetabolizing enzyme polymorphisms has a minor role in the assessment of platelet reactivity in patients with acute coronary syndrome. Anatol. J. Cardiol. 2017 Apr; 17(4): 303-312. doi: 10.14744/AnatolJCardiol.2016.7390. epub 2017 Feb 1.

44. Lee J.S., Cheong H.S., Kim L.H. et al. Screening of Genetic Polymorphisms of CYP3A4 and CYP3A5 Genes. Korean J. Physiol. Pharmacol. 2013 Dec; 17(6): 479-84. doi: 10.4196/kjpp.2013.17.6.479. epub 2013 Dec 16.

45. Angiolillo D.J., Fernandez-ortiz A., Bernardo E., et al. Contribution of gene sequence variations of the hepatic cytochrome P450 3A4 enzyme to variability in individual responsiveness to clopidogrel. Arterioscler. Thromb. Vasc. Biol. 2006 Aug; 26(8): 1895-900. epub 2006 Apr 27.

46. Suh J.W., Koo B.K., Zhang S.Y., et al Increased risk of atherothrombotic events associated with cytochrome P450 3A5 polymorphism in patients taking clopidogrel. CMAJ. 2006 Jun 6; 174(12): 1715-22.

47. Nishio R., Shinke T., Otake H., et al Paraoxonase-1 activity affects the clopidogrel response in CYP2C19 loss-of-function carriers. Thromb. res.2013 nov; 132(5): 558-64. doi: 10.1016/j.thromres.2013.09.008. epub 2013 sep 13.

48. Mega J.L., Close S.L., Wiviott S.D., et al. Pon1 Q192R genetic variant and response to clopidogrel and prasugrel: pharmacokinetics, pharmacodynamics, and a meta-analysis of clinical outcomes. J. Thromb. Thrombolysis.2016 Apr; 41(3): 374-83. doi: 10.1007/s11239-015-1264-9.

49. Trenk D., Hochholzer W., Fromm M.F., et al. Paraoxonase-1 Q192R polymorphism and antiplatelet effects of clopidogrel in patients undergoing elective coronary stent placement. Circ. Cardiovasc. Genet. 2011 Aug 1;4(4):429-36. doi: 10.1161/CIRCGenetICs.111.960112. epub 2011 Jun 17.

50. Ma W., Liang Y., Zhu J. et al Relationship of paraoxonase-1 Q192R genotypes and in-stent restenosis and re-stenting in Chinese patients after coronary stenting. Atherosclerosis. 2016 Aug;251:305-310. doi: 10.1016/j.atherosclerosis.2016.07.901. epub 2016 Jul 15.

51. Cuisset T, Loosveld M, Morange Peet al. CYP2C19*2 and *17 alleles have a significant impact on platelet response and bleeding risk in patients treated with prasugrel after acute coronary syndrome. JACC Cardiovasc. Interv. 2012 Dec; 5(12): 1280-7. doi: 10.1016/j.jcin.2012.07.015.

52. Xiang Q., Cui Y., Zhao X., Zhao N. Identification of PeAR1 snPs and their influences on the variation in prasugrel pharmacodynamics. Pharmacogenomics. 2013 Jul; 14(10): 1179-89. doi: 10.2217/pgs.13.108.

53. Stimpfle F., Bauer M., Rath D. et al. Variants of PeAR1 Are Associated With outcome in Patients With ACs and stable CAD Undergoing PCI. front Pharmacol. 2018 May 15; 9: 490. doi: 10.3389/fphar.2018.00490. eCollection 2018.

54. Wallentin L., James S., Storey R.F., et al effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLAtotrial. Lancet. 2010 oct 16; 376(9749): 1320-8. doi: 10.1016/s0140-6736(10)61274-3.

55. Tantry U.S., Bliden K.P., Wei C. et al First analysis of the relation between CYP2C19 genotype and pharmacodynamics in patients treated with ticagrelor versus clopidogrel: the onset/oFFset and ResPonD genotype studies. Circ. Cardiovasc. Genet. 2010 Dec;3(6):556-66. doi: 10.1161/CIRCGenetICs.110.958561. epub 2010 nov 15.

56. Varenhorst C., Eriksson N., Johansson et al. ticagrelor plasma levels but not clinical outcomes are associated with transporter and metabolism enzyme genetic polymorphisms. Journal of the American College of Cardiology. 2014; 63(12): 25. doi: 10.1016/s0735-1097(14)60025-5.

57. Storey R.F., Thornton M.S., Lawrance R., et al ticagrelor yields consistent dose-dependent inhibition of ADP-induced platelet aggregation in patients with atherosclerotic disease regardless of genotypic variations in P2RY12, P2RY1, and ItGB3. Platelets. 2009 Aug; 20(5): 341-8. doi: 10.1080/09537100903075324.

58. Scordo M.G., Pengo V., Spina E., Dahl M.L., Gusella M., Padrini R. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin. Pharmacol. Ther. 2002; 72: 70 2 -710 .

59. Hermida J., Zarza J., Alberca I., et al. Differential effects of 2C9*3 and 2C9*2 variants of cytochrome P-450 CYP2C9 on sensitivity to acenocoumarol. Blood. 2002; 99: 4237-4239.

60. Joffe H.V., Xu R., Johnson F.B., Longtine J., et al. Warfarin dosing and cytochrome P450 2C9 polymorphisms. Thromb. Haemost. 2004; 91: 1123-1128.

61. Сироткина О.В., Улитина А.С., Тараскина А.Е. с соавт. Аллельные варианты CYP2C9*2 и CYP2C9*3 гена цитохрома CYP2C9 в популяции Санкт-Петербурга и их клиническое значение при антикоагулянтной терапии варфарином. российский кардиологический журнал. 2004; 6: 24-31.[Sirotkina O.V., Ulitina A.S., Taraskina A.E., et al. CYP2C9 * 2 and CYP2C9 * 3 allelic variants of cytochrome CYP2C9 in the st. Petersburg population and their clinical significance in anticoagulant warfarin therapy. rossiyskiy Kardiologicheskiy Zhurnal. 2004; 6: 24-31.] (In Russ).

62. Zhu Y., Shennan M., Reynolds K. et al. estimation of Warfarin Maintenance Dose Based on VKoRC1 (–1639 G>A) and CYP2C9 Genotypes. Clinical Chemistry. 2007; 53: 1199-1205.

63. Михеева Ю.А., Кропачева Е.С., Игнатьев И.В. с соавт. Полиморфизм гена цитохрома Р4502С9(CYP2C9) и безопасность терапии варфарином. Кардиология. 2008; 3: 77-83.

64. Панченко Е.П., Михеева Ю.А., Сычев Д.А. с соавт. Новый подход к повышению безопасности лечения варфарином (результаты фармакогенетического исследования). Кардиологический вестник. 2008; III, 2(15): 38-44 [Panchenko e.P., Mikheeva Yu.A., sychev D.A., et al. A new approach to improving warfarin therapy safety (results of pharmacogenetic studies). Kardiologicheskiy Vestnik. 2008; III, 2 (15): 38-44 ] (In Russ).

65. Sanderson S., Emery J., Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGenet systematic review and meta-analysis. Genet. med. 2005 Feb; 7(2): 97-104.

66. Rieder M.J., Reiner A.P., Gage B.F., et al. effect of VKoRC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med. 2005 Jun 2; 352(22): 2285-93.

67. Harrington D.J., Underwood S., Morse C., et al. Pharmacodynamic resistance to warfarin associatedwith a Val66Met substitution in vitamin K epoxide reductase complex subunit 1. Thromb. Haemost. 2005; 93: 23–6.

68. Bodin L., Horellou M.H., Flaujac C., et al. A vitamin K epoxide reductase complex subunit-1 (VKoRC1) mutation in a patient with vitamin K antagonist resistance. J. Thromb. Haemost. 2005; 3: 533–1535.

69. Rettie A.e. and tai G. the Pharmocogenomics of Warfarin Closing. Personalized medicine molecular Interventions. 2006; 6: 223-227.

70. Sun X., Yu W.Y., Ma W.L. et al. Impact of the CYP4F2 gene polymorphisms on the warfarin maintenance dose: A systematic review and meta-analysis. Biomed rep. 2016 Apr; 4(4): 498-506. epub 2016 Feb 15.

71. Di Fusco D., Ciccacci C., Rufini S. et al Resequencing of VKoRC1, CYP2C9 and CYP4F2 genes in Italian patients requiring extreme low and high warfarin doses. Thromb res. 2013 Jul; 132(1): 123-6. doi: 10.1016/j.thromres.2013.05.002. epub 2013 May 30.

72. Bress A., Patel S.R., Perera M.A., et al. Effect of nQo1 and CYP4F2 genotypes on warfarin dose requirements in Hispanic-Americans and African-Americans. Pharmacogenomics. 2012 Dec; 13(16): 1925-35. doi: 10.2217/pgs.12.164.

73. Wypasek E., Branicka A., Awsiuk M. et al Genetic determinants of acenocoumarol and warfarin maintenance dose requirements in slavic population: a potential role of CYP4F2 and GGCX polymorphisms. Thromb. res. 2014 sep; 134(3): 604-9. doi: 10.1016/j.thromres.2014.06.022. epub 2014 Jul 7.

74. Klein T.E., Altman R.B., Eriksson N. International Warfarin Pharmacogenetics Consortium, estimation of the warfarin dose with clinical and pharmacogenetic data. n. Engl. J. med. 2009 Feb 19; 360(8): 753-64. doi: 10.1056/neJMoa0809329.

75. Pirmohamed M., Burnside G., Eriksson N. et al A randomized trial of genotype-guided dosing of warfarin. n. Engl. J. med. 2013 Dec 12; 369(24): 2294-303. doi: 10.1056/neJMoa1311386. epub 2013 nov 19.

76. Li X., Yang J., Wang X. et al Clinical benefits of pharmacogenetic algorithm-based warfarin dosing: meta-analysis of randomized controlled trials. Thromb res. 2015 Apr; 135(4): 621-9. doi: 10.1016/j.thromres.2015.01.018. epub 2015 Jan 17.

77. Belley-Cote E.P., Hanif H., D’Aragon F., et al. Genotype-guided versus standard vitamin K antagonist dosing algorithms in patients initiating anticoagulation. A systematic review and meta-analysis. Thromb. Haemost. 2015 oct; 114(4): 768-77. doi: 10.1160/tH15-01-0071. epub 2015 Jul 9.

78. Kheiri B., Abdalla A., Haykal T. et al. Meta-Analysis of Genotype-Guided Versus standard Dosing of Vitamin K Antagonists. Am. J. Cardiol. 2018 Apr 1; 121(7): 879-887. doi: 10.1016/j.amjcard.2017.12.023. epub 2018 Jan 12.

79. Mega J.L., Walker J.R., Ruff C.T. et al Genetics and the clinical response to warfarin and edoxaban: findings from the randomised, double-blind enGAGe AF-tIMI 48 trial. Lancet. 2015 Jun 6; 385(9984): 2280-7. doi: 10.1016/s0140-6736(14)61994-2. epub 2015 Mar 11.

80. Routledge A., Shetty H.G.M., White J.P. et al. Case studies in therapeutics: warfarin resistance and inefficacy in a man with recurrent thromboembolism, and anticoagulant-associated priapism. Br. J. Clin. Pharmacol. 1998 october; 46(4): 343–346.

81. Ainle F.N., Mumford A., Tallon E. et al. A vitamin K epoxide reductase complex subunit 1 mutation in an Irish patient with warfarin resistance. Ir. J. med. Sci. 2008 Jun; 177(2): 159-61. doi: 10.1007/s11845-008-0126-2. epub 2008 Feb 12.

82. Кропачева Е.С., Панченко Е.П., Добровольский А.Б., Саидова М.А. Резистентность к варфарину у пациентки с абсолютными показаниями к приему антагонистов витамина К. атеротромбоз. 2009; 1: 4-9. [Kropacheva E.S., Panchenko E.P., Dobrovolsky A.B., Saidova M.A. Warfarin resistance in a patient with absolute indications for vitamin K antagonists. Aterotromboz. 2009; 1: 4-9. ] (In Russ).

83. Paré G., Eriksson N., Lehr T., et al Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation. 2013 Apr 2; 127(13): 1404-12. doi: 10.1161/CIRCULAtIonAHA.112.001233. epub 2013 Mar 6.

84. Sychev D.A., Levanov A.N., Shelekhova T.V. et al the impact of ABCB1 (rs1045642 and rs4148738) and Ces1 (rs2244613) gene polymorphisms on dabigatran equilibrium peak concentration in patients after total knee arthroplasty. Pharmgenomics Pers. med. 2018 Jul 25; 11: 127-137. doi: 10.2147/PGPM.s169277. eCollection 2018.

85. Dimatteo C., D’Andrea G., Vecchione G., et al Pharmacogenetics of dabigatran etexilate interindividual variability. Thromb res. 2016 Aug; 144: 1-5. doi: 10.1016/j.thromres.2016.05.025. epub 2016 May 26.

86. Nutescu E., Chuatrisorn I., Hellenbart E. Drug and dietary interactions of warfarin and novel oral anticoagulants: an update. J Thromb Thrombolysis. 2 011 Apr; 31(3): 326-43. doi: 10.1007/s11239-011-0561-1.

87. Wang L., Raghavan N., He K., Luettgen J.M., et al. Sulfation of o-demethyl apixaban: enzyme identification and species comparison. Drug Metab. Dispos. 2009 Apr; 37(4): 802-8. doi: 10.1124/dmd.108.025593. epub 2009 Jan 8.


Для цитирования:


Кропачева Е.С. ФАРМАКОГЕНЕТИКА АНТИТРОМБОТИЧЕСКИХ ПРЕПАРАТОВ: СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ. Атеротромбоз. 2018;(2):115-129. https://doi.org/10.21518/2307-1109-2018-2-115-129

For citation:


Kropacheva E.S. PHARMACOGENETICS OF ANTITHROMBOTIC DRUGS: STATUS UPDATE ON THE PROBLEM. Atherothrombosis. 2018;(2):115-129. (In Russ.) https://doi.org/10.21518/2307-1109-2018-2-115-129

Просмотров: 232


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2307-1109 (Print)
ISSN 2658-5952 (Online)