Cardiomyopathy and multiple arterial thrombosis in a patient with severe tachyform atrial fibrillation after COVID-19
https://doi.org/10.21518/2307-1109-2021-11-1-6-24
Abstract
We present a case of cardiomyopathy with a reduced left ventricular ejection fraction of up to 18%, multivessel arterial thrombosis in a patient who had undergone severe COVID-19 3.5 months earlier. The cardiopathy was initially considered as an outcome of SARSCoV2-induced myocarditis, but MRI with delayed gadolinium contrast revealed no fibrosis or evidence of active myocarditis. A detailed collection of the medical history showed that the duration of tachyform atrial fibrillation exceeded the 4 months indicated in the medical records. Oligosymptomatic manifestation of arrhythmia occurred 8 months earlier, the patient did not consult a physician due to epidemic conditions. Coronary angiography revealed subtotal stenosis of the anterior descending artery. Most probably, the cardiopathy was arrhythmogenic and ischemic. After achieving normosystole and coronary stenting, the left ventricular ejection fraction was 25-27%. At the first hospitalization 4 months ago, left atrial auricular thrombus was detected. After COVID-19 the patient received inadequately low dose of apixaban 5 mg per day. Three weeks after COVID-19, the patient was diagnosed with infarction of the right kidney, wall thrombosis in the abdominal aorta, thrombosis of the superficial femoral, deep femoral, popliteal, anterior tibial arteries on the left, right popliteal artery; thrombotic complications could have developed both in situ and as a result of cardioembolism. Administration of dabigatran 300 mg per day and aspirin helped to dissolve the thrombus in the left atrial auricle, improve the course of intermittent claudication, and avoid recurrent thrombotic complications. COVID-19 could contribute to the progression of atherosclerosis, more malignant course of atrial fibrillation, development of thrombosis, but coronavirus infection is not the only cause of severe disease in a patient. СOVID-19 can not only be the cause of direct lesions of the heart and vessels, but also have an indirect negative effect - to delay the detection of cardiac pathology and be the cause of its hypodiagnosis under the mask of “postcovid”.
Keywords
About the Authors
O. O. ShakhmatovaRussian Federation
Olga O. Shakhmatova, Cand. Sci. (Med.), Researcher of the Department of Clinical Problems of Atherothrombosis
15a, 3rd Cherepkovskaya St., Moscow, 121552
E. P. Panchenko
Russian Federation
Elizaveta P. Panchenko, Dr. Sci. (Med.), Professor, Head of the Department of Clinical Problems of Atherothrombosis
15a, 3rd Cherepkovskaya St., Moscow, 121552
T. V. Balakhonova
Russian Federation
Tatyana V. Balakhonova, Dr. Sci. (Med.), Professor of the Department of Ultrasonic Research Methods
15a, 3rd Cherepkovskaya St., Moscow, 121552
M. I. Makeev
Russian Federation
Maksim I. Makeev, Physician of the Department of Ultrasound Diagnostics
15a, 3rd Cherepkovskaya St., Moscow, 121552
V. M. Mironov
Russian Federation
Vsevolod M. Mironov, Cand. Sci. (Med.), Physician of the Department of Endovascular Methods of Diagnosis and Treatment
15a, 3rd Cherepkovskaya St., Moscow, 121552
Z. N. Blankova
Russian Federation
Zoya N. Blankova, Cand. Sci. (Med.), Сardiologist, Researcher, Consultative and Diagnostic Department
15a, 3rd Cherepkovskaya St., Moscow, 121552
E. A. Butorova
Russian Federation
Ekaterina A. Butorova, Cand. Sci. (Med.), Physician of the Department of Tomography
15a, 3rd Cherepkovskaya St., Moscow, 121552
References
1. Xiang D., Xiang X., Zhang W., Yi S., Zhang J., Gu X. et al. Management and Outcomes of Patients With STEMI During the COVID-19 Pandemic in China. J Am Coll Cardiol. 2020;76(11):1318–1324. https://doi.org/10.1016/j.jacc.2020.06.039.
2. De Rosa S., Spaccarotella C., Basso C., Calabrò M.P., Curcio A., Filardi P.P. et al. Reduction of Hospitalizations for Myocardial Infarction in Italy in the COVID-19 Era. Eur Heart J. 2020;41(22):2083– 2088. https://doi.org/10.1093/eurheartj/ehaa409.
3. Keizman E., Ram E., Kachel E., Sternik L., Raanani E. The Impact of COVID-19 Pandemic on Cardiac Surgery in Israel. J Cardiothorac Surg. 2020;15(1):294. https://doi.org/10.1186/s13019-020-01342-5.
4. Banerjee A., Chen S., Pasea L., Lai A.G., Katsoulis M., Denaxas S. et al. Excess Deaths in People with Cardiovascular Diseases during the COVID-19 Pandemic. Eur J Prev Cardiol. 2021:zwaa155. https://doi.org/10.1093/eurjpc/zwaa155.
5. Greenhalgh T., Knight M., A’Court C., Buxton M., Husain L. Management of Post-Acute COVID-19 in Primary Care. BMJ. 2020;370:m3026. https://doi.org/10.1136/bmj.m3026.
6. Cheruiyot I., Kipkorir V., Ngure B., Misiani M., Munguti J., Ogeng’ J. Arterial Thrombosis in Coronavirus Disease 2019 Patients: A Rapid Systematic Review. Ann Vasc Surg. 2021;70:273–281. https://doi.org/10.1016/j.avsg.2020.08.087.
7. Fournier M., Faille D., Dossier A., Mageau A., Nicaise Roland P., Ajzenberg N. et al. Arterial Thrombotic Events in Adult Inpatients with COVID-19. Mayo Clin Proc. 2021;96(2):295–303. https://doi.org/10.1016/j.mayocp.2020.11.018.
8. Etkin Y., Conway A.M., Silpe J., Qato K., Carroccio A., Manvar-Singh P. et al. Acute Arterial Thromboembolism in Patients with COVID-19 in the New York City Area. Ann Vasc Surg. 2021;70:290–294. https://doi.org/10.1016/j.avsg.2020.08.085.
9. Bellosta R., Luzzani L., Natalini G., Pegorer M.A., Attisani .L, Cossu L.G. et al. Acute Limb Ischemia in Patients with COVID-19 Pneumonia. J Vasc Surg. 2020;72(6):1864–1872. https://doi.org/10.1016/j.jvs.2020.04.483.
10. Kashi M., Jacquin A., Dakhil B., Zaimi R., Mahé E., Tella E., Bagan P. Severe Arterial Thrombosis Associated with COVID-19 Infection. Thromb Res. 2020;192:75–77. https://doi.org/10.1016/j.thromres.2020.05.025.
11. Fan B.E., Umapathi T., Chua K., Chia Y.W., Wong S.W., Tan G.W. L. et al. Delayed Catastrophic Thrombotic Events in Young and Asymptomatic Post COVID-19 Patients. J Thromb Thrombolysis. 2021;51(4):971–977. https://doi.org/10.1007/s11239-020-02332-z.
12. Cancer-Perez S., Alfayate-García J., VicenteJiménez S., Ruiz-Muñoz M., Dhimes-Tejada F.P., Gutiérrez-Baz M. et al. Symptomatic Common Carotid Free-Floating Thrombus in a COVID-19 Patient, Case Report and Literature Review. Ann Vasc Surg. 2021:S0890-5096(21)00194-1. https://doi.org/10.1016/j.avsg.2021.02.008.
13. Bokeriya L.A., Pokrovsky A.V., Akchurin R.S., Alekyan B.G., Apkhanova T.V., Arakelyan V.S. et al. National Guidelines for the Diagnosis and Treatment of Diseases of the Arteries of the Lower Extremities. Moscow; 2019. 89 p. (In Russ.) Available at: http://www.angiolsurgery.org/library/recommendations/2019/recommendations_LLA_2019.pdf.
14. Harrison S.L., Fazio-Eynullayeva E., Lane D.A., Underhill P., Lip G.Y. H. Atrial Fibrillation and the Risk of 30-Day Incident Thromboembolic Events, and Mortality in Adults ≥ 50 Years with COVID-19. J Arrhythm. 2020;37(1):231–237. https://doi.org/10.1002/joa3.12458.
15. Rattanawong P., Shen W., El Masry H., Sorajja D., Srivathsan K., Valverde A., Scott L.R. Guidance on Short-Term Management of Atrial Fibrillation in Coronavirus Disease 2019. J Am Heart Assoc. 2020;9(14):e017529. https://doi.org/10.1161/JAHA.120.017529.
16. Greenberg A., Pemmasani G., Yandrapalli S., Frishman W.H. Cardiovascular and Cerebrovascular Complications with COVID-19. Cardiol Rev. 2021;29(3):143–149. https://doi.org/10.1097/CRD.0000000000000385.
17. Holt A., Gislason G.H., Schou M., Zareini B., Biering-Sørensen T., Phelps M. et al. New-Onset Atrial Fibrillation: Incidence, Characteristics, and Related Events Following a National COVID-19 Lockdown of 5.6 Million People. Eur Heart J. 2020;41(32):3072–3079. https://doi.org/10.1093/eurheartj/ehaa494.
18. Gopinathannair R., Merchant F.M., Lakkireddy D.R., Etheridge S.P., Feigofsky S., Han J.K. et al. COVID-19 and Cardiac Arrhythmias: a Global Perspective on Arrhythmia Characteristics and Management Strategies. J Interv Card Electrophysiol. 2020;59(2):329–336. https://doi.org/10.1007/s10840-020-00789-9.
19. South A.M., Diz D.I., Chappell M.C. COVID-19, ACE2, and the Cardiovascular Consequences. Am J Physiol Heart Circ Physiol. 2020;318(5):H1084-H1090. https://doi.org/10.1152/ajpheart.00217.2020.
20. Xu P., Sriramula S., Lazartigues E. ACE2/ANG- (1-7)/Mas Pathway in the Brain: the Axis of Good. Am J Physiol Regul Integr Comp Physiol. 2011;300(4):R804-R817. https://doi.org/10.1152/ajpregu.00222.2010.
21. Gawałko M., Kapłon-Cieślicka A., Hohl M., Dobrev D., Linz D. COVID-19 Associated Atrial Fibrillation: Incidence, Putative Mechanisms and Potential Clinical Implications. Int J Cardiol Heart Vasc. 2020;30:100631. https://doi.org/10.1016/j.ijcha.2020.100631.
22. Grzegorowska O., Lorkowski J. Possible Correlations between Atherosclerosis, Acute Coronary Syndromes and COVID-19. J Clin Med. 2020;9(11):3746. https://doi.org/10.3390/jcm9113746.
23. Golitsyn S.P., Panchenko E.P., Kropacheva E.S., Layovich L.Yu., Maikov E.B., Mironov N.Yu., Shakhmatova O.O. Eurasian Clinical Recommendations on Diagnosis and Treatment of Atrial Fibrillation. Yevraziyskiy kardiologicheskiy zhurnal = Eurasian Heart Journal. 2019;(4):4–85. (In Russ.) Available at: https://heartj.asia/jour/article/view/341.
24. U.S. National Library of Medicine. Resolution of Left Atrial-Appendage Thrombus – Effects of Dabigatran in Patients with AF (RE-LATED_AF). Available at: https://clinicaltrials.gov/ct2/show/NCT02256683.
25. Hao L., Zhong J.Q., Zhang W., Rong B., Xie F., Wang J.T. et al. Uninterrupted Dabigatran versus Warfarin in the Treatment of Intracardiac Thrombus in Patients with Non-Valvular Atrial Fibrillation. Int J Cardiol. 2015;190:63–66. https://doi.org/10.1016/j.ijcard.2015.04.104.
26. Lip G.Y., Hammerstingl C., Marin F., Cappato R., Meng I.L., Kirsch B. et al. Left Atrial Thrombus Resolution in Atrial Fibrillation or Flutter: Results of a Prospective Study with Rivaroxaban (X-TRA) and a Retrospective Observational Registry Providing Baseline Data (CLOT-AF). Am Heart J. 2016;178:126– 134. https://doi.org/10.1016/j.ahj.2016.05.007.
27. Hussain A., Katz W.E., Genuardi M.V., Bhonsale A., Jain S.K., Kancharla K. et al. Non-Vitamin K Oral Anticoagulants versus Warfarin for Left Atrial Appendage Thrombus Resolution in Nonvalvular Atrial Fibrillation or Flutter. Pacing Clin Electrophysiol. 2019;42(9):1183–1190. https://doi.org/10.1111/pace.13765.
28. Lin C., Quan J., Bao Y., Hua W., Ke M., Zhang N. et al. Outcome of Non-Vitamin K Oral Anticoagulants in the Treatment of Left Atrial/Left Atrial Appendage Thrombus in Patients with Nonvalvular Atrial Fibrillation. J Cardiovasc Electrophysiol. 2020;31(3):658–663. https://doi.org/10.1111/jce.14365.
29. Daaboul I.S., Koroleva S.Yu., Kudrjavtseva A.A., Sokolova A.A., Napalkov D.A., Fomin V.V. Thrombosis of Left Atrial Appendage during Therapy with Direct Oral Anticoagulant. Clinical Case. Ratsional’naya farmakoterapiya v kardiologii = Rational Pharmacotherapy in Cardiology. 2018;14(3):350–355. (In Russ.) https://doi.org/10.20996/1819-6446-2018-14-3-350-355.
30. Szegedi N., Gellér L., Tahin T., Merkely B., Széplaki G. Successful Direct Thrombin Inhibitor Treatment of a Left Atrial Appendage Thrombus Developed under Rivaroxaban Therapy. Orv Hetil. 2016;157(4):154–156. (In Hungarian) https://doi.org/10.1556/650.2016.30350.
31. Morita S., Ajiro Y., Uchida Y., Iwade K. Dabigatran for Left Atrial Thrombus. Eur Heart J. 2013;34(35):2745. https://doi.org/10.1093/eurheartj/eht148.
32. Connolly S.J., Ezekowitz M.D., Yusuf S., Eikelboom J., Oldgren J., Parekh A. et al. Dabigatran versus Warfarin in Patients with Atrial Fibrillation. N Engl J Med. 2009;361(12):1139–1151. https://doi.org/10.1056/NEJMoa0905561.
33. Avdeev S.N., Adamyan L.V., Alekseeva E.I., Bagnenko S.F., Baranov A.A., Baranova N.N. et al. Temporary Guidelines. Prevention, Diagnosis and Treatment of New Coronavirus Infection (COVID-19). Version 10 (02/08/2021). Moscow: Ministry of Health of the Russian Federation; 2021. 261 p. (In Russ.) Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/588/original/Временные_МР_COVID-19_%28v.10%29-08.02.2021_%281%29.pdf.
34. Li Y., Xiao S.Y. Hepatic Involvement in COVID-19 Patients: Pathology, Pathogenesis, and Clinical Implications. J Med Virol. 2020;92(9):1491–1494. https://doi.org/10.1002/jmv.25973.
35. Muhović D., Bojović J., Bulatović A., Vukčević B., Ratković M., Lazović R., Smolović B. First Case of Drug-Induced Liver Injury Associated with the Use of Tocilizumab in a Patient with COVID-19. Liver Int. 2020;40(8):1901–1905. https://doi.org/10.1111/liv.14516.
36. Sun J., Deng X., Chen X., Huang J., Huang S., Li Y. et al. Incidence of Adverse Drug Reactions in COVID-19 Patients in China: An Active Monitoring Study by Hospital Pharmacovigilance System. Clin Pharmacol Ther. 2020;108(4):791–797. https://doi.org/10.1002/cpt.1866.
37. Gallagher C., Nyfort-Hansen K., Rowett D., Wong C.X., Middeldorp M.E., Mahajan R. et al. Polypharmacy and Health Outcomes in Atrial Fibrillation: A Systematic Review and Meta-Analysis. Open Heart. 2020;7(1):e001257. https://doi.org/10.1136/openhrt-2020-001257.
38. Alonso A., MacLehose R. F., Chen L.Y., Bengtson L.G., Chamberlain A.M., Norby F.L., Lutsey P.L. Prospective Study of Oral Anticoagulants and Risk of Liver Injury in Patients with Atrial Fibrillation. Heart. 2017;103(11):834–839. https://doi.org/10.1136/heartjnl-2016-310586.
Review
For citations:
Shakhmatova O.O., Panchenko E.P., Balakhonova T.V., Makeev M.I., Mironov V.M., Blankova Z.N., Butorova E.A. Cardiomyopathy and multiple arterial thrombosis in a patient with severe tachyform atrial fibrillation after COVID-19. Aterotromboz = Atherothrombosis. 2021;(1):6-24. (In Russ.) https://doi.org/10.21518/2307-1109-2021-11-1-6-24

This work is licensed under a Creative Commons Attribution Attribution-NonCommercial-NoDerivs License.